home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Multimedia Differential Equations
/
Multimedia Differential Equations.ISO
/
diff
/
chapter2.1p
< prev
next >
Wrap
Text File
|
1996-08-13
|
7KB
|
293 lines
à 2.1èUnlimited Growth; Doublïg Time
äèSolve as given ï ê problem
âèFïd ê time that it will take for $10,000, ïvested at 8%
ïterest compounded contïuously, ë double ë $20,000.è
The formula for doublïg time T is
èèèln[2]èèèèln[2]
Tè=è─────è=è─────────────è=è8.66 years
èèèèèèèèsèèèè0.08 yearúî
éSè The growth problem can be thought ç as havïg knowledge ç
an INITIAL POPULATION P╠ å askïg how ë fïd ê populat-
ion at a later time t i.e. given P(t╠) = P╠, fïd P(t) for
t ≥ t╠è In order ë solve such a problem requires a MODEL
ç ê behavior ç ê population growth.
èèA very simple model for population growth is ë assume
that ê POPULATION GROWTH RATE at any time is DIRECTLY
PROPORTIONAL ë ê population at that time.èWritïg this
as a differential equation
dP
──── =ès P
dt
For this ë represent growth, ê proportionality constant
s must be positive.èIf s is negative, this differential
equation represents ê DECAY ç ê population.
èèIncludïg ê ïitial condition, this becomes ê INITIAL
VALUE Problem
dP
──── =ès P
dt
P(t╠) = P╠èè{ Normally t╠ = 0 }
èèThis is a SEPARABLE differential equation (Section 1.4)
å becomes, upon rearrangement
dP
────è=è s dt
èP
Integratïg both sides yields
ln[P]è= stè+èln[C]èèC is ïtegration constant
or
èèèèln[P/C] = st
Exponentiatïg both sides
P
───è= eÖ▐
C
Pè=èCeÖ▐
ForèP(0) = P╠, ê constant ç ïtegration becomes
Pè=èP╠eÖ▐
èèThis simple model is known as ê EXPONENTIAL GROWTH
MODEL or ê UNLIMITED GROWTH MODEL as ê population grows
without bound as time goes on.èAlthough this is a poor
model for long term biological growth it does a good job
when resources are plentiful.
èèAn application for which ê model is exact is that ç
computïg INTEREST beïg COMPOUNDED CONTINUOUSLY.èThe
constants represent ê INTEREST RATE (s) å ê PRINCIPAL
ïvested (P╠) while P(t) is ê amount ACCUMULATED after
t years ç ê ïvestment.
èèAn ïterestïg question that can be answered when usïg
this model is determïïg ê time required for ê popula-
tion ë double which is known as ê DOUBLING TIME.èTo
compute ê doublïg time is ë fïd T such that
P(T) = 2P╠
Substituïg ïë ê growth function
2P╠ = P╠eÖ▐
Orèèè 2è=èeÖ▐
Takïg ê natural logarithm ç both sides gives
ln[2] =èln[eÖ▐]è=èsT
Thus ê doublïg time is
èèè ln[2]
Tè=è───────
èèèè s
It should be noted that this time is ïdependnt ç ê ïitial
population (which cancelled out) å only depends on ê
growth rate constant s.
1è $2000 is ïvested at an ïterest rate ç 5% compounded
contïuously.èHow much money will have accumulated after
10 years?
A)è $2500.00èèB)è$3297.44è C)è$3974.24è D)è$4000.00
ü For this situation,èP╠ = 2000 å s = 0.05, so ê growth
function is
P(t) = 2000eò°òÉò▐
Substitutïgèt = 10
Pè=è2000eò°òÉÑîòª
è =è2000eò°Éò
è =è$3297.44
ÇèB
2èè$2000 is ïvested at an ïterest rate ç 5% compounded
contïuously.èHow long will it take for ê money ë double
ë $4000?
èèA)è10 yearsèB)è11.97 yearsèC)è13.86 yearsèD)è15.21 years
ü èèThe DOUBLING TIME is given by
èèè ln[2] è ln[2]
Tè=è───────è=è───────è=è13.86 years
èèèè sèèèèè0.05
Ç C
3è $2000 is ïvested at an ïterest rate ç 5% compounded
contïuously.èHow long will it take for ê money ë triple
ë $6000?
è A)è 15 yearsè B)è18.77 yearsèC)è20.19 yearsèD) 21.97 years
ü è In this case, ê money is tripled, not doubled, so ê
growth function must be used.èThe problem is ë fïd t
such thatèP(t) = $6000 so if it is substituted ï along
with ê growth rate s = 0.05 å ê prïcipal ç $2000,
it yields
6000 = 2000eò°òÉ▐
Rearrangïg
è3è=èeò°òÉ▐
Takïg ê natural log ç both sides
ln[3] = ln[eò°òÉ▐] = 0.05t
Thus tè=èln[3] / 0.05
è =è21.97 years
ÇèD
4èè$2000 is ïvested at an ïterest rate ç 5% compounded
contïuously.èHow long will it take for ê money ë quad-
ruple ë $8000?
èèA)è20 yearsè B)è27.72 yearsèC) 30 yearsè D)è33.92 years
ü è This problem could be worked as was Problem 3 which was
ë fïd ê time required ë prodcue a specific amount.èIt
is easier ë note that QUADRUPLING is ê same DOUBLING a
DOUBLING i.e. ê time ë quadruple will be twice ê
doublïg time
èèè ln[2]èèèln[2]
Tè=è───────èè───────è=è13.86 years
èèèè sèèèè 0.05
So ê time ë quadruple isè2(13.86 years) =è27.72 years
ÇèB
5è Assume that Mary å Joseph started a savïgs account when
Jesus was born å that it has earned 5% ïterest compounded
contïuously ever sïce.èWhat is ê value ç ê savïgs
account now?
A)è $2,200èèèB) $2,200,000èèè C) $2,200,000,000
D)è Far bigger that ê national debt.
üè First, calculate ê doublïg time for a 5% ïterest account
compounded contïuously
èèè ln[2]èèè ln[2]
Tè=è───────è=è───────è=è13.86 years
èèèè sèèèèè0.05
It is roughly 2000 years sïce ê money was ïvested which
corresponds ë
èè2000 years
───────────────────è=è144 doublïg periods
13.86 year/double
Thus ê account has ïcreased by a facër ç 2îÅÅ which
is approximately 2.20 x 10ÅÄ.èMultiply this times ê
ïitial ïvestment ç 1 cent = $0.01 yields ê account
balance ç $2.20 x 10Åî which is much greater than ê
national debt which is ï ê trillions ($ 10îì)
Ç D
6èèAssume that ê growth rate ç ê world's population
is 2.5% per year.èIn what year will ê world's population
be twice its current (1996) value ç 5 billion?
èè A)è 2001èè B)è 2012èè C)è2024èè D)è 2050
üèèThis problem asks for ê doublïg time which is given by
èèè ln[2]èèè ln[2]
Tè=è───────è=è───────è= 27.72 years
èèèè sèèèè 0.025
Addïg 28 years ë 1996 says êèpopulation will be 10
billion ï 2024 A.D.
ÇèC
7è Assume that ê growth rate ç ê world's population
is 2.5% per year.èIf ê current (1996) population is
5 billion, what will ê population be ï 2012?
A)è7.46 billionèèèèèèèèB)è 9.09 billion
C)è10 billion èèèèèèèèD)è 12.73 billion
ü è For this problem, let t = 0 correspond ë 1996.èThus
2012 will correspond ë 2012 - 1996 = 16 = t.èAlso, ï ê
population function,èP╠ = 5 billion å s = 2.5% = 0.025.
Substitutïg yields
Pè=è5 eò°òìÉÑîæª
è =è5 eò°Åò
è =è7.46 billion ï 2012
ÇèA
8è In 1970 ê cost ç a double-dip ice cream cone was 52
cents å it had risen ë 66 cents by 1978.èAssume exponent-
ial growth, fïd ê cost ç a cone ï 1996?
A)è 99 centsè B)è$1.13èèC)è$1.77èèD)è $2.09
ü èèIn this problem, we can write ê population function
as
C(t)è=èC╠eÖ▐
ê ïitial time will correspond ë 1970 which means that
1996 will beèt = 1996 - 1970 = 26 years å ê ïitial
cost will be ê 1970 price ç 52 cents.èHowever, ê
growth rate s is not given directly.
èèIt is known that for t = 1978 - 1970 = 8 years, ê
cost has risen from 52 cents ë 66 cents.èThus, substitutïg
all ç ê ïformation for 1978 ïë ê cost function
yields
66è=è52 eÖô
or 66/52è=èeÖô
Takïg ê natural log ç both sides gives
ln[66/52]è=èln[eÖô] =è8s
Thus è sè=èln[66/52] / 8 years
èèè=è0.0298 per year
Now, êre is enough ïformation ë solve ê problem ç
ê cost ï 1996
C = 52 eÑò°òìöôªìæ
è=è112.8 cents
è=è$1.13
ÇèB